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November 18, 2002

1 Notation

Throughout the solutions I will use the natural units where c = h̄ = 1.

2 Useful Properties of Commutators

Before doing the actual problems, I will derive the identities which will be useful in solving
them as well as in working with commutators in the future. First,

[A+B,C] = (A+B)C − C(A+B) = AC − CA+BC − CB = [A,C] + [B,C] (1)

and using the fact that [A,B] = AB − BA = −(BA − AB) = −[B,A], [C,A + B] =
[C,A] + [C,B]. Also

A[B,C] + [A,C]B = ABC − ACB + ACB − CAB = (AB)C − C(AB) = [AB,C] (2)

and similarly [C,AB] = A[C,B] + [C,A]B.

3 Problem 1

a). For an electron in a specific state (i.e. when we know whether it has spin up or spin
down) the spin part of the wave function is just

χ = χ±1/2.

Then the expectation values of Sz and S2 are

< Sz >= χ∗Szχ = ±1

2
χ∗
±1/2χ±1/2 = ±1

2

and

< S2 >= χ∗S2χ =
3

4
χ∗
±1/2χ±1/2 =

3

4
.

1



Therefore

< | cos θ| >= 1/2√
3/2

=
1√
3

b). This corresponds to θ = 0.96, π − 0.96.

4 Alternate Problem 1

a). I mentioned to some students, that they may interpret the problem as though you are
given an electron, which is equally likely to be in either spin up or the spin down state. In
that case

χ =
1√
2
(χ+1/2 + χ−1/2).

Then

< Sz >= χ∗Szχ =
1

2

(
χ∗

+1/2χ+1/2 − χ∗
+1/2χ−1/2 + χ∗

−1/2χ+1/2 − χ∗
−1/2χ−1/2

)
=

=
1

2

(
χ∗

+1/2χ+1/2 − χ∗
−1/2χ−1/2

)
= 0,

where I used the fact that χ∗
mχm′ = δmm′ . Thus < | cos θ| >= 0.

b). This corresponds to θ = π/2.

5 Problem 2

A† = y† − iq† = y − iq,

where I used the fact that y† = x†
√
mω0/2 = x

√
mω0/2 and similarly for q. Using Eq. 1 we

can compute

[A,A†] = [y + iq, y − iq] = [y, y − iq] + [iq, y − iq] = [y, y] + [y,−iq] + [iq, y] + [iq,−iq] =
= −i[y, q] + i[q, y] + [q, q] = −2i[y, q],

where I used the fact that constants factor out of commutators and anything commutes

with itself. Then using the defenitions of y and q we have [y, q] = [x
√
mω0/2, p/

√
2mω0] =

1/2[x, p] = ih̄/2 = i/2. Therefore [A,A†] = 1. Applying Eqns. 1 and 2 further gives us

[H,A†] =
ω0

2
[A†A+ AA†, A†] =

ω0

2
([A†A,A†] + [AA†, A†]) =

=
ω0

2
([A†, A†]A+ A†[A,A†] + A[A,A†] + [A†, A†]A†) =

=
ω0

2
(A†[A,A†] + [A,A†]A†) = ω0A

†.

Since I have just proven that HA† − A†H = ω0A
†, we can take the hermitian conjugate of

the whole equation and get

ω0A = AH† −H†A = AH −HA = −[H,A].
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6 Problem 3

First we rewrite Lx as Lx = ypz − zpy and notice that [pz, z] = −i and [pz, x] = [pz, y] = 0
(similarly for py and px and all momenta commute with each other). We can then cyclically
permute the indicies to get Ly = zpx − xpz (or you can show it the hard way). Then

[Lx, Ly] = [ypz − zpy, zpx − xpz] = [ypz, zpx]− [zpy, zpx]− [ypz, xpz] + [zpy, xpz] =

= [ypz, zpx] + [zpy, xpz] = y[pz, z]px + x[z, pz]py = −iypx + ixpy = iLz.

Similarly

[L+, L−] = [Lx + iLy, Lx − iLy] = i[Ly, Lx]− i[Lx, L, y] = −2i[Lx, Ly] = 2Lz,

[L−, Lz] = [Lx − iLy, Lz] = [Lx, Lz]− i[Ly, Lz] = −iLy + Lx = L−,

where I once again cyclically permuted the indicies in [Lx, Ly] = iLz to get the other com-
mutators. Further

[L+, Lz] = [Lx + iLy, Lz] = [Lx, Lz] + i[Ly, Lz] = −iLy − Lx = −L+

and

[L2, Lz] = [L2
x +L2

y +L2
z, Lz] = [L2

x, Lz] + [L2
y, Lz] = −i(LxLy +LyLx) + i(LyLx +LxLy) = 0.

Once again cyclically permuting the indices we will similarly get [L2, Ly] = [L2, Lz] = 0.
Thus

[L2, L±] = [L2, Lx]± i[L2, Ly] = 0.

7 Problem 4

a).
L∗

+L+ = (Lx − iLy)(Lx + iLy) = L2
x + L2

y − i[Ly, Lx] = L2 − L2
z − Lz.

Hence
(L+Yll)

∗L+Yll = Y ∗
llL

∗
+L+Yll = Y ∗

ll

(
l(l + 1)− l2 − l

)
Yll = 0

and therefore L+Yll = 0.
b).

L∗
−L− = (Lx + iLy)(Lx − iLy) = L2

x + L2
y + i[Ly, Lx] = L2 − L2

z + Lz.

Hence

1 =
∫
dΩY ∗

l,m−1Yl,m−1 =
1

|C−(l,m)|2
∫
dΩ(L−Ylm)

∗L−Ylm =
1

|C−(l,m)|2
∫
dΩYlmL

∗
−L−Ylm =

=
1

|C−(l,m)|2
∫
dΩY ∗

lm(l(l + 1)− l2 +m)Ylm =
l +m

|C−(l,m)|2 .

Thus |C−(l,m)|2 = l +m.
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8 Problem 5

Once again using the rules for the commutators we have

[H,R] = 1/2([LR,R] + [RL,R]) = 1/2([L,R]R +R[L,R]) = E0R = HR−RH.

Then
HRuE = RHuE + E0RuE = (E + E0)RuE.

9 Problem 6

In this problem (as well as the next one) we will make use of the facts that

∫ ∞

0
xne−axdx =

n ∗ (n− 1) ∗ ... ∗ 1
an+1

and

< f(r) >=
∫
Rnl(r)

∗f(r)Rnl(r)r
2dr

∫
|Ylm(θ, φ)|2dΩ =

∫
Rnl(r)

∗f(r)Rnl(r)r
2dr.

Thus, using the table on page 245 (and obtaining the fact that Z = 1 from examining the
Coulomb potential) we have

< V >= < −α/r >= −α
∫
R21(r)

∗(1/r)R21(r)r
2dr =

−α
24

(
1

ao

)5
∫ ∞

0
r3e−r/aodr =

=
−α
24

(
1

ao

)56a4
o = −α/(4ao)

and

< KE >=< E > − < V >= − α

8ao

− −α
4ao

=
α

8ao

= − < V > /2

10 Problem 7

Using the equations at the beginning of Problem 6 we have

< r >=
∫
R21(r)

∗rR21(r)r
2dr = (

Z

ao

)5
∫ ∞

0
r5e−r/aodr = (

Z

ao

)5120(
ao

Z
)6 = 120ao/Z.

11 Problem 8

We approximate rav � 5 ∗ 10−16 << ao. a). Then

P1,0 = 25 ∗ 10−474/a3
o = 6.7 ∗ 10−15.
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b). Also
P2,1 = 25 ∗ 10−4725 ∗ 10−32/(24a5

o) = 6.2 ∗ 10−27.

This probability is much smaller because for l = 1 the electron has angular momentum and
is circling the nucleus (as opposed to the case of l = 0 when the angular momentum is 0
and the electron is oscillating back and forth through the nucleus). Also for a higher energy
state we would expect for the electron to stay farther from the nucleus (on average), but this
effect is much less significant (the energies differ only by a factor of 4).

5


